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A model of a chemical system in which the traveling impulse is affected by externally imposed natural
convection in the form of the Be´nard rolls is considered. The traveling impulse is described by the two-
variable model of the B-Z reaction in an excitable regime. Numerical solutions to corresponding reaction-
diffusion-convection equations show that the natural convection can generate a train of pulses of excitation,
which are created from the single traveling impulse. The subsequently generated pulses spread alternately in
the same and in the opposite directions as the initial traveling impulse, and they exhibit some type of
translational delayed symmetry.

I. Introduction

Chemical waves create density gradients caused by concen-
trations gradients. Moreover, the temperature gradient can be
created due to reaction heat and it can affect the density gradient.
If the density gradient has a nonvanishing component perpen-
dicular to the gravitational field, then natural convection appears
always in liquid systems.1 Natural convection does not appear
only if the chemical wave has the form of a traveling front that
spreads vertically and the density increases downward. How-
ever, also in this case one cannot exclude natural convection
because of the so-called double-diffusion phenomenon.2,3 All
other chemical waves (single traveling impulses, trains of
traveling impulses, spiral waves) appearing in liquid systems
generate natural convection.
Although traveling waves almost always generate natural

convection, experimental measurements of the convection
patterns are rare. The convection pattern caused by the trains
of the traveling impulses in the B-Z reaction has been measured
directly.4 The oscillations in the velocity of natural convection
have been discovered. Most of experimental works have been
concerned with studies of an influence of natural convection
on traveling fronts.5-15 The experiments were usually per-
formed in thin tubes without thermostating of the systems.
Several chemical reactions have been studied: iron(II)-nitric
acid,5,8 iodate-sulfite,13,15 bromate-sulfite,13,14 chlorate-
sulfite,10 iodate-arsenous acid,7,12 chlorite-thiosulfate,6 and
chlorite-tiourea.11 Natural convection causes the curvature of
the fronts and changes substantially their velocity as compared
with convectionless conditions. For example, the traveling front
in the nitric acid-iron(II) reaction in a thin tube spreads
downward with a velocity from 4 to 10 times larger than that
upward.5 In several cases the “finger” concentration patterns,
due to the double-diffusion effect, were observed.8-11,15

Natural convection disturbs a traveling wave, and the
disturbed wave affects the convection pattern. Therefore, to
describe the chemical wave, which is disturbed by natural
convection, it is necessary to use reaction-diffusion-convection
equations instead of reaction-diffusion equations. The funda-
mental problem that appears here is the determination of a
natural convection pattern. It is necessary to solve simulta-
neously the Navier-Stokes equation and balance equations for
mass and internal energy. The last two equations must include

corresponding convection terms, whereas the term with buoy-
ancy force in the Navier-Stokes equation should contain the
density distribution determined by the reagents concentrations
and the temperature fields. It is assumed that an equation of
state is known that allows the determination of the density
distribution from known concentration and temperature distribu-
tions.
The influence of natural convection on chemical waves has

been discussed mainly in a qualitative way.3,5-15 Quantitative
solutions have been obtained for very simple models only. The
front traveling vertically in systems with various geometries has
been replaced by the jump in density (the so-called eikonal
relation), and linear stability theory was used to determine
natural convection pattern from the Navier-Stokes equation.16-21
For traveling fronts described by the Schlo¨gel type kinetics that
generate continuous changes in density, the linear stability
analysis of the Navier-Stokes equation has been supported by
numerical calculations.22,23 Transitions between convection
patterns dependent on the geometry of the system have been
predicted.23 The obtained results confirm experimental observa-
tions that natural convection induces the curvature of traveling
fronts. The influence of natural convection appearing in the
electro-thermodiffusion method on the Schlo¨gel type traveling
front has been studied numerically.24 In this case, the influenceX Abstract published inAdVance ACS Abstracts,September 15, 1997.

Figure 1. Distribution of the concentration of HBrO2 in a one-
dimensional system after 210 and 300 s. TheX axis is given as the
number of steps from the center of the system (one step equals 0.025
mm).
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of the front on the convection pattern has been neglected.
Similar simplification has been used in the study of the influence
of the Bénard rolls on the same front.25 In these cases natural
convection changes substantially the shape of the front and
increases its velocity. An influence of natural convention on
the traveling impulse described by the two-variable Oregonator
model has been studied by the linear stability analysis of the
Navier-Stokes equation combined with numerical calcula-
tions.26 The results obtained for various geometries of the
system are in qualitative agreement with the experimental
observations. Convection patterns caused by stationary distribu-
tions of concentrations having the form of one or more pulses
have been studied numerically.27 The results obtained are in
agreement with the experimental observations of oscillations
of velocity of convection in the B-Z system.4 In all cases
described above qualitative properties of the waves remain
unchanged. The flat fronts become curved, and the shape of

the impulses is changed. Qualitative changes such as divisions
of the chemical waves do not appear.
In the present paper we study the influence of externally

imposed fluid motion on traveling impulses. In our model a
chosen convection pattern can change qualitative properties of
the impulse as compared with convectionless conditions. A
division of the traveling impulse can appear. The two-variable
model of the Belousov-Zhabotinsky reaction in an excitable
regime28 is chosen to generate traveling impulses in spatially
distributed systems. Moreover, we assume that a vertical
temperature gradient generates the convection pattern (the
Bénard rolls), which can be described in a two-dimensional
geometry.29 To simplify the problem, we neglect the affect of

Figure 2. Two-dimensional snapshots showing the evolution of the
concentration distribution of HBrO2 for r ) 1. Both axis are described
as the numbers of their size steps. Five pairs of the rolls are shown.

Figure 3. Same as in Figure 2 but forr ) 3. Five pairs of the mid-
rolls are shown only.
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the density distribution generated by the impulse on the
convection pattern. This simplification is reasonable if the
density distribution is determined not only by the concentration
distribution generated by the traveling wave but also by the
temperature distribution that generates the Be´nard rolls. The
contribution to the density distribution coming from the traveling
wave can be much smaller as compared with the temperature
gradient. For the Be´nard rolls the solution to the Navier-Stokes
equation is known in explicit form, and we will use this solution
in the convection term of the kinetic equation. In this way the
influence of the traveling wave on a pattern of natural convection
is neglected, but the influence of the convection on the
concentration distribution is taken into account.
The paper is organized as follows. In section II a model

describing the traveling impulse is presented. In section III the
Bénard rolls are described, and in the next section the reaction-
diffusion-convection model is formulated. In section V the
obtained results are presented and discussed. In last section
we present conclusions that follow from our results.

II. Model of Traveling Impulses

Dynamics of the B-Z reaction (bromate, bromomalonic acid,
ferroine, and sulfuric acid) in some range of initial concentra-
tions of the reactants can be described by two kinetic
equations.28,30-31 These equations are based on the Field-
Körös-Noyes mechanism.32 It is convenient to write them in
the form in which concentrations are used as dimensionless
variables whereas time is a dimensional variable:

where

h0 is the acidity function (unit M) [mol/L]), q is the
stoichiometric factor, andki are the rate constants. In sequel
we will use the values of the parameters, which are identical
with those in31

For these values of the parameters in a broad range of the
reactant concentrations the nullcline forc1 has an inverse N
shape, whereas the nullcline forc2 is an increasing function of
c1. These curves can intersect themselves in one point only,
which corresponds to a stationary state. Equations 1, for some
values of the reactants concentrations, describe simple, periodic
in time oscillations of [Fe(phen)3

3+], which agree well with the
experiments performed in the batch reactor.30,33 For the
following reactants concentrations,B ) 0.775 M,A ) 0.01 M,
C) 6.5× 10-4 M, andh0 ) 0.15 M, system 1 is in the excitable
regime and in this case one can expect an appearance of the
traveling impulse.
The behavior of spatially distributed system is described by

reaction-diffusion equations in the form

Figure 4. Snapshots of the concentration distribution of HBrO2 for r ) 3 at selected moments of the time showing the symmetry given by eq 7:
(a) t ) 150 s and (b)t ) 165 s. Twenty-five pairs of the rolls are shown.
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whereF1(c1,c2) andF2(c1,c2) are equal to the right-hand sides
of eqs 1a,b andD1 andD2 are diffusion coefficients of [HBrO2]
and [Fe(phen)3

3+]. The formation of the traveling impulse
caused by a local disturbance of the concentration above the
threshold value was confirmed by numerical solution of the
reaction-diffusion equations, eqs 2. In our calculations we
assumed:D1 ) D2 ) 4× 10-5 cm2/s. The numerical solutions
were performed for a finite in space system with zero-flux
boundary conditions. However, the size of the system was so
large that gradients of the concentrations close to the boundaries
were negligibly small and the part of the impulse between its
“front” and “back” remained far from the boundaries and
occupied a small interval in our system. The profile of the
HBrO2 concentration is shown in Figure 1. One can easily see
the “front” and the “back” of the impulse. Just behind the back
there is the region in which the concentration of HBrO2 falls
down below the stationary value to so-called refractory region.
Next the concentration of HBrO2 grows and approaches its

stationary value. The repeated disturbance will generate the
next traveling impulse.
For the values of the given parameters the traveling impulse

has the velocity equal to 0.12 mm/s and its “width”, which is
the distance between the front and the back is equal to 1.02
mm.

III. Bé nard Rolls

In an infinite horizontal fluid layer heated from below, natural
convection appears if a critical value of the Rayleigh number
is exceeded. The Rayleigh number is defined by

whereg is the acceleration due gravity,R the coefficient of
volume expansion,∆T the temperature difference,d the depth
of the layer,κ the coefficient of thermometric conductivity, and
ν the coefficient of kinematic viscosity.
The onset of instability is manifested as the appearance of a

nonvanishing disturbance of convection velocity with a par-
ticular wavenumber. For rigid boundaries the critical value of
the Rayleigh number isRac ) 1707.762. The horizontal period
of the convection pattern is given byL ) 2πd/ac, where the
critical value of the dimensionless wavenumberac ) 3.117.29

Various convection patterns (hexagons, rolls) are possible.
Hexagonal patterns need three-dimensional geometry and
therefore, are much more time and memory consuming in
numerical calculations that must be used to solve a reaction-
diffusion-convection equation. In the case of rolls we have a
two-dimensional geometry. Only one of the horizontal coor-
dinates, sayX, is sufficient. For simplicity, in this paper the
convection pattern in the form of the rolls is considered.
In the dimensionless coordinatesz ) Z/d andx ) X/d, the

vertical Vz and horizontalVx components of the convection
velocity for the rolls are defined by:29

where

and

andA1 is the amplitude of the convection velocity29

In eqs 4 the variablez changes in the limits-1/2 e z e 1/2.

IV. Reaction-Diffusion-Convection Model

Let us assume now that the traveling impulse is generated in
an infinite horizontal layer with the B-Z reaction mixture in
which natural convection has the form of the Be´nard rolls. Local
changes of the dimensionless concentrations of [HBrO2] and

Figure 5. Same as in Figure 3 but forr ) 5.
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W(z) ) cos(q0z) - a1 cosh(q1z) cos(q2z) +
a2 sinh(q1z) sin(q2z)

a1 ) 0.061 510 563 9, a2 ) 0.103 886 7,
q0 ) 3.973 639, q1 ) 5.194 989 7, q2 ) 2.126 287 6

A1 )x80.23(κd)2(RaRac - 1)
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[Fe(phen)3
3+] are described by the reaction-diffusion-con-

vection equations

whereVx andVz are horizontal and vertical components of the
convection velocity in the Be´nard rolls given by eqs 4a,b. For
convenience, the time and the space coordinates have their usual
dimensions. We want to stress that we neglect the influence
of the density gradient generated by the traveling impulse on
the convection pattern. Otherwise we should solve simulta-
neously eqs 5 and the Navier-Stokes equation, with the density
distribution determined by the traveling impulse.
Since our system is infinite in the directionX, we assume

the initial distributions ofc1 andc2 in the form of the traveling
impulse that is the asymptotic solution of eqs 2 (see Figure 1).
At initial time the concentrations distributions are independent
of the vertical coordinateZ. For the vertical coordinateZ we
assume the zero-flux boundary conditions:

For given values of the parameters in eqs 2, there are two
free parameters, which to some extent, can be controlled in
experiments. One of them is the ratio of “width” of the impulse
to the period of the Be´nard rolls. In the sequel we will assume
that the “width” of the impulse is about half of the single Be´nard
roll. For the impulse that covers one or more rolls, one can
expect the effects similar to those observed in the model with
the traveling front.25 On the other hand, if the impulse is too
narrow, then the numerical calculations need much more
powerful computer than we have available. The other free
parameter (r) is the ratio of a maximal convection velocity to
the traveling impulse velocity in the convectionless system. In
our calculations the velocity of the traveling impulse was
constant, and we changedA1 so that the ratior was equal to 1,
3, 5, and 7.

V. Results and Discussion

Equations 5 were solved numerically on two-dimensional
lattice covering an integral number of pairs of the Be´nard rolls.
The initial value problem with respect to theX coordinate was
replaced by the boundary value problem with the zero-flux
boundary conditions. All calculations were started from five
pairs of the rolls. We numerate the rolls from the mid-pair by
the first right (left) roll, the second right (left) roll, and so on.
If the concentrations ofc1 andc2 at the right or left boundary
roll become different by assumed value from the stationary state,
then we enlarge the system by a pair of the rolls with the
concentrationsc1 andc2 equal to their stationary values. Each
pair of the rolls was divided into 170 equal distance steps along
theX coordinate and 85 along theZ direction. Let us mention
that the space step in theX direction is a little larger than the
step inZ direction and their ratio is equal to 1.007 86. We
have used the Crank-Nicolson scheme in calculations of the
spatial distributions ofc1 andc2, and we have applied the four-
stage Runge-Kutta method in order to calculate the kinetic
terms.
The results of numerical solution of the problem forr ) 1

are shown in Figure 2. In this figure as well as in the next
figures,X andZ coordinates are given as the number of grid
points from the center of the system. The initial impulse is
bending alongX andZ according to the convection pattern and
spreads to the right with “jumping” velocity. After a transient
regime (about 30 s), the distributions ofc1 andc2 approach their
asymptotic forms, which have the following symmetry property:

This property means that the concentration distribution that
is shifted back along theX coordinate by one pair of the rolls
(the period of convection patternL) is the same as the nonshifted
distribution was at the time periodT earlier. Forr ) 1 we
observed time-space evolution of the single impulse of
excitation.
The behavior of the systems changes qualitatively forr ) 3.

The beginning of evolution of the initial traveling impulse is
shown in Figure 3. The initial impulse, which att ) 0 s is in

Figure 6. Same as in Figure 4 butr ) 5 and att ) 107 s (a) andt ) 118 s (b).
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the first right roll, is twisted and stretched. It would be
misleading to call it “the impulse”, and therefore, we will use
the term “a pulse of excitation” to describe excited regions. As
shown in Figure 3, the pulse of excitation envelops to the second
right roll (seet ) 8 s). Later on the pulse spreads also to the
first left roll, and then its division into two pulses occurs (see
t ) 12 s). These two pulses, still twisting and stretching, join
together and again form one pulse that extends over four rolls
(seet ) 16 s). Next this large pulse decomposes again into
two pulses (seet ) 19 s). The right pulse occupies the third
right roll, and the left one extends over three rolls. These pulses
undergo a complicated evolution. The right pulse spreads to
the fourth right roll (seet ) 23 s), and next it decomposes
leaving excited pieces behind (seet ) 26 s). Simultaneously
the left pulse spreads to the opposite direction and also
decomposes leaving two excited pieces of it behind (seet ) 26
s). The excited pieces left by the both pulses join together (see
t ) 30 s andt ) 34 s), and next they form a new large pulse
of excitation in the first and the second right rolls (seet ) 38
s). Whereas the right and the left pulses continue spreading in
opposite directions (seet ) 42 s), the complicated evolution in
the mid-rolls produces the next pair of pulses; one of them
follows the right pulse, and the other one spreads behind the
left pulse. The process of joining of pieces of excitation left
behind by pulses spreading to right and to left and the creation
of the large pulse of excitation in the mid-rolls repeats itself. In
this way the mid-rolls become a “source” of the train of pulses
spreading alternately in opposite directions. This part of
evolution is not shown here. In Figure 4 the distributions ofc1
at t ) 150 and 165 s are shown, respectively. It is easy to see
that these distributions exhibit the same type of symmetry as
given by eq 7, if regions are limited to those outside of the
initial five pairs of rolls (-425< x< 425). We have not found
any periodicity in the concentrations distributions in the mid-
rolls. Each new pair of pulses that leave the region of the initial
five rolls is created from slightly different distributions ofc1
andc2.
The little simpler evolution of the initial traveling impulse is

observed forr ) 5. As it is shown in Figure 5 the pulse of
excitation spreads into the second right roll (seet ) 4s) and
later on also to the first left roll (seet ) 8s) and next decomposes
into two pulses (seet ) 12 s). These two pulses never join
together, but one of them spreads to right and the other one to
left (see t ) 15 s). The left pulse leaves the long tail of
excitation behind it (seet ) 19 s), which joins with the tail left
behind the right pulse (seet ) 21 s). In this way in the first
right roll the new pulse of excitation is formed (seet ) 23 s
andt ) 25 s), which after twisting and stretching decomposes
to the new pair of the pulses. The process of joining of tails of
excitations left behind the pulses repeats itself, and similarly
as in the previous case the mid-rolls become the source of a
train of pulses spreading alternately to the right and left. In
Figure 6 the distributions ofc1 at t ) 107 and 118 s are shown.
As it is seen in this case the symmetry given by eq 7 is fulfilled
only by the most outside pulses. The pulses that follow behind
them satisfy this symmetry but with a slightly smaller time
periodT.
Further increment ofr to 7 does not cause significant changes

in the character of evolution as compared with the previous case.
The initial period of the evolution is shown in Figure 7. The
twisting and stretching of pulse is followed by its division into
two pulses spreading to the right and to the left. In the mid-
rolls the new pulse is formed from the tails of excitations left
by the pulses. This pulse generates the new pair of pulses and
so on. The region of the mid-rolls becomes the source of pulses

spreading alternately to the right and to the left. In Figure 8
the distributions ofc1 at t ) 101 and 120 s are shown. The
symmetry given by eq 7 is limited to the most outside pulses
only. The pulses that follow them also have the same type of
symmetry but with a smaller value of the periodT.
The apparent velocity with which the pulses are spreading

in the horizontal direction can be defined by the ratio ofL and
the corresponding time periodT. Values of this apparent
velocity are 0.12, 0.17, 0.28, 0.38, and 0.45 (mm/s) forr ) 0,
1, 3, 5, and 7, respectively.

VI. Conclusions

The results presented above show that the convection
transport can change in a qualitative way the evolution of
concentrations distributions as compared with convectionless
conditions. In the particular case considered in the present paper
natural convection can induce the division of pulses of excita-

Figure 7. Same as in Figures 3 and 5 but forr ) 7.
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tions which in consequence causes the creation of train of pulses
spreading alternately in opposite directions. The division of
the initial traveling impulse occurs if the ratio of the maximal
velocity of natural convection to the velocity of the traveling
impulse is sufficiently large. There is some critical value of
this ratio that must be exceeded in order to induce the division
of pulses of excitation. In our system the critical value is

between 1 and 3. Below the critical value only the initial
traveling impulse is deformed (see Figure 2).
Our system is composed from the realistic model of the

chemical wave and the convection pattern that can be observed
in real systems. We want to stress that such composition can
be performed experimentally. The other story is that the
experiments can be difficult to perform. However, the effect
of division of pulses of excitation described in this paper can
appear spontaneously in thin layers of reaction mixtures with
free surfaces in which a vertical temperature gradient can be
generated by the evaporation of the mixture. In this case natural
convection can appear due to the Maragoni effect caused by
the variation of surface tension with temperature.34
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(25) Kawczyński, A. L.; Otowska, M.Z. Phys. Chem.1994, 186, 171.
(26) Wu, Y.; Vasquez, D. A.; Edwards, B. F.; Wilder, J. W.Phys. ReV.

E 1995, 51, 1119.
(27) Plesser, T.; Wilke, H.; Winters, K. H.Chem. Phys. Lett.1992, 200,

158.
(28) Aliev, R. R.; Rovinsky, A. B.J. Phys. Chem.1992, 96, 732.
(29) Chandrasekhar, S.Hydrodynamic and Hydromagnetic Stability;

Clarendon Press: Oxford, 1961.
(30) Rovinsky, A. B.; Zhabotinsky, A. M.J. Phys. Chem.1984, 88,

6081.
(31) Rovinsky, A. B.J. Phys. Chem.1986, 90, 217.
(32) FIeld, R. J.; Ko¨rös, E.; Noyes, R. M.J. Am. Chem. Soc.1971, 94,

8649.
(33) Zhabotinsky, A. M.; Buchholtz, F.; Kiytkin, A. B.; Epstein, I. R.

J. Phys. Chem.1993, 97, 7578.
(34) Koschmieder E. I. InAdVances in Chemical Physics;V. XXVI;

Prigogine I.; Rice S. A., Eds.; Wiley: New York, 1974; Vol. XXVI, p
177.

Figure 8. Same as in Figure 4 but forr ) 7 and at (a)t ) 101 s, 25
pairs of the rolls and (b)t ) 120 s, 30 pairs of the rolls.

Influence of Bénard Rolls in the B-Z Reaction J. Phys. Chem. A, Vol. 101, No. 43, 19978069


